| 最近在弄Sensor驱动,看过一个某厂家的成品驱动,里面实现的全都是sysfs接口,hal层利用sysfs生成的接口,对Sensor进行操作。说到sysfs接口,就不得不提到函数宏 DEVICE_ATTR原型是#define DEVICE_ATTR(_name, _mode, _show, _store)  struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
 函数宏DEVICE_ATTR内封装的是__ATTR(_name,_mode,_show,_stroe)方法,_show表示的是读方法,_stroe表示的是写方法。 当然_ATTR不是独生子女,他还有一系列的姊妹__ATTR_RO宏只有读方法,__ATTR_NULL等等 如对设备的使用  DEVICE_ATTR  ,对总线使用  BUS_ATTR  ,对驱动使用 DRIVER_ATTR  ,对类别 (class) 使用  CLASS_ATTR,  这四个高级的宏来自于<include/linux/device.h>  DEVICE_ATTR  宏声明有四个参数,分别是名称、权限位、读函数、写函数。其中读函数和写函数是读写功能函数的函数名。 1、如果你完成了DEVICE_ATTR函数宏的填充,下面就需要创建接口了 例如:     staticDEVICE_ATTR(polling, S_IRUGO | S_IWUSR, show_polling, set_polling);static struct attribute *dev_attrs[] = {
 &dev_attr_polling.attr,
 NULL,
 };
 
 当你想要实现的接口名字是polling的时候,需要实现结构体struct attribute *dev_attrs[] 其中成员变量的名字必须是&dev_attr_polling.attr 2、然后再封装     static structattribute_group dev_attr_grp = {3、再利用sysfs_create_group(&pdev->dev.kobj, &dev_attr_grp);创建接口.attrs = dev_attrs,
 };
 
 
 通过以上简单的三个步骤,就可以在adb shell 终端查看到接口了。 当我们将数据 echo 到接口中时,在上层实际上完成了一次 write 操作,对应到 kernel ,调用了驱动中的 “store”。同理,当我 们cat 一个 接口时则会调用 “show” 。到这里,只是简单的建立了 android 层到 kernel 的桥梁,真正实现对硬件操作的,还是 在 "show" 和 "store" 中完成的。其实呢?!用个proc文件系统的就知道,这个就喝proc中的write和read一样的,以我的理解:proc有点老了,以后肯定会大量使用attribute,proc好比是Windows XP,attribute就像是Windows Seven。 
 
 ###################################################################### 以下来个例子: 
 /** Sample kobject implementation
 *
 * Copyright (C) 2004-2007 Greg Kroah-Hartman <greg@kroah.com>
 * Copyright (C) 2007 Novell Inc.
 *
 * Released under the GPL version 2 only.
 *
 */
 #include <linux/kobject.h>
 #include <linux/string.h>
 #include <linux/sysfs.h>
 #include <linux/module.h>
 #include <linux/init.h>
 #include <asm/gpio.h>
 #include <linux/delay.h>
 
 /*
 * This module shows how to create a simple subdirectory in sysfs called
 * /sys/kernel/kobject-example  In that directory, 3 files are created:
 * "foo", "baz", and "bar".  If an integer is written to these files, it can be
 * later read out of it.
 */
 
 static int foo;
 
 /*
 * The "foo" file where a static variable is read from and written to.
 */
 
 static struct msm_gpio qup_i2c_gpios_io[] = {
 { GPIO_CFG(60, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_scl" },
 { GPIO_CFG(61, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_sda" },
 { GPIO_CFG(131, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_scl" },
 { GPIO_CFG(132, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_sda" },
 };
 
 static struct msm_gpio qup_i2c_gpios_hw[] = {
 { GPIO_CFG(60, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_scl" },
 { GPIO_CFG(61, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_sda" },
 { GPIO_CFG(131, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_scl" },
 { GPIO_CFG(132, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
 "qup_sda" },
 };
 
 static void gsbi_qup_i2c_gpio_config(int adap_id, int config_type)
 {
 int rc;
 
 if (adap_id < 0 || adap_id > 1)
 return;
 
 /* Each adapter gets 2 lines from the table */
 if (config_type)
 rc = msm_gpios_enable(&qup_i2c_gpios_hw[adap_id*2], 2);
 else
 rc = msm_gpios_enable(&qup_i2c_gpios_io[adap_id*2], 2);
 if (rc < 0)
 pr_err("QUP GPIO request/enable failed: %d\n", rc);
 }
 
 static ssize_t foo_show(struct kobject *kobj, struct kobj_attribute *attr,
 char *buf)
 {
 return sprintf(buf, "%d\n", foo);
 }
 
 static ssize_t foo_store(struct kobject *kobj, struct kobj_attribute *attr,
 const char *buf, size_t count)
 {
 int sda,scl;
 int i;
 sscanf(buf, "%du", &foo);
 printk("foo = %d.\n",foo);
 
 foo = foo -1;
 
 if  (foo < 0 || foo > 1)
 {
 printk("input foo error. foo=%d.\n",foo);
 return 0;
 }
 
 sda = GPIO_PIN((&qup_i2c_gpios_hw[foo*2+1])->gpio_cfg);
 scl = GPIO_PIN((&qup_i2c_gpios_hw[foo*2])->gpio_cfg);
 
 printk("sda = %d.\n",sda);
 printk("scl = %d.\n",scl);
 
 gsbi_qup_i2c_gpio_config(foo,0);
 
 for(i=0;i<9;i++)
 {
 if(gpio_get_value(sda))
 {
 printk("sda of i2c%d is high when %d pulse is output on scl.\n",foo,i);
 break;
 }
 gpio_set_value(scl,0);
 udelay(5);
 gpio_set_value(scl,1);
 udelay(5);
 }
 
 gsbi_qup_i2c_gpio_config(foo,1);
 
 printk("finish.\n");
 return count;
 }
 
 static struct kobj_attribute foo_attribute =
 __ATTR(i2c_unlock, 0666, foo_show, foo_store);
 
 /*
 * Create a group of attributes so that we can create and destroy them all
 * at once.
 */
 static struct attribute *attrs[] = {
 &foo_attribute.attr,
 NULL,»  /* need to NULL terminate the list of attributes */
 };
 
 /*
 * An unnamed attribute group will put all of the attributes directly in
 * the kobject directory.  If we specify a name, a subdirectory will be
 * created for the attributes with the directory being the name of the
 * attribute group.
 */
 static struct attribute_group attr_group = {
 .attrs = attrs,
 };
 
 static struct kobject *example_kobj;
 
 static int __init example_init(void)
 {
 int retval;
 
 /*
 * Create a simple kobject with the name of "kobject_example",
 * located under /sys/kernel/
 *
 * As this is a simple directory, no uevent will be sent to
 * userspace.  That is why this function should not be used for
 * any type of dynamic kobjects, where the name and number are
 * not known ahead of time.
 */
 example_kobj = kobject_create_and_add("i2c_recovery", kernel_kobj);
 if (!example_kobj)
 return -ENOMEM;
 
 /* Create the files associated with this kobject */
 retval = sysfs_create_group(example_kobj, &attr_group);
 if (retval)
 kobject_put(example_kobj);
 
 return retval;
 }
 
 static void __exit example_exit(void)
 {
 kobject_put(example_kobj);
 }
 
 module_init(example_init);
 module_exit(example_exit);
 MODULE_LICENSE("GPL");
 MODULE_AUTHOR("Wupeng");
 
 |