说明: 1. Based on linux 2.6.32 and android 2.2,only support SDR(mem). 2. 参考文章: http://2695477.blog.51cto.com/blog/2685477/484751 http://www.docin.com/p-115475680.html http://blogold.chinaunix.net/u3/113927/showart_2447111.html http://www.cnmsdn.com/html/201003/1269407632ID2530.html 一、新增特性介绍 实际上,android仍然是利用了标准linux的休眠唤醒系统,只不过添加了一些使用上的新特性,early suspend、late resume、wake lock。 Early suspend - 这个机制定义了在suspend的早期,关闭显示屏的时候,一些和显示屏相关的设备,比如背光、重力感应器和触摸屏等设备都应该被关掉,但是此时系统可能还有持有wake lock的任务在运行,如音乐播放,电话,或者扫描sd卡上的文件等,这个时候整个系统还不能进入真正睡眠,直到所有的wake lock都没释放。在嵌入式设备中,悲观是一个很大的电源消耗,所有android加入了这种机制。 Late resume - 这个机制定义了在resume的后期,也就是唤醒源已经将处理器唤醒,标准linux的唤醒流程已经走完了,在android上层系统识别出这个物理上的唤醒源是上层定义的,那么上层将会发出late resume的命令给下层,这个时候将会调用相关设备注册的late resume回调函数。 Wake lock - wakelock在android的电源管理系统中扮演一个核心的角色,wakelock是一种锁的机制, 只要有task拿着这个锁, 系统就无法进入休眠, 可以被用户态进程和内核线程获得。这个锁可以是有超时的或者是没有超时的, 超时的锁会在时间过去以后自动解锁。如果没有锁了或者超时了, 内核就会启动标准linux的那套休眠机制机制来进入休眠。 二、kernel层源码解析 - early suspend 和 late resume实现 相关源码: kernel/kernel/power/main.c kernel/kernel/power/earlysuspend.c kernel/kernel/power/wakelock.c kernel/kernel/power/userwakelock.c kernel/kernel/power/suspend.c 之前标准的linux的sysfs的接口只需要一个state就够了,现在至少需要3个接口文件:state、wake_lock、wake_unlock。现在为了配合android为休眠唤醒添加的几种新特性,可以填入文件state的模式又多了一种:on, 标准android系统中只支持state的on和mem模式,其余的暂不支持。wake_lock和wake_unlock接口对应的读写函数在文件userwakelock.c中,对wakelock.c中的create wakelock或者release wakelock进行了封装,供用户空间来使用。 如果上层用户执行:echo xxx(on or mem) > sys/power/state的话,将会调用到如下函数: static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { #ifdef CONFIG_SUSPEND // set #ifdef CONFIG_EARLYSUSPEND //set suspend_state_t state = PM_SUSPEND_ON; // for early suspend and late resume #else suspend_state_t state = PM_SUSPEND_STANDBY; #endif const char * const *s; #endif char *p; int len; int error = -EINVAL; p = memchr(buf, '/n', n); len = p ? p - buf : n; /* First, check if we are requested to hibernate */ if (len == 4 && !strncmp(buf, "disk", len)) { error = hibernate(); // 检查是否要求进入disk省电模式,暂时不支持 goto Exit; } #ifdef CONFIG_SUSPEND // def for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) { if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) break; } if (state < PM_SUSPEND_MAX && *s) #ifdef CONFIG_EARLYSUSPEND if (state == PM_SUSPEND_ON || valid_state(state)) { // 需要经过平台pm.c文件定义的模式支持检查函数,mtk只支持mem,同时如果是android发送出来的late resume命令(on),这里也会放行,往下执行 error = 0; request_suspend_state(state); // android休眠唤醒的路线 } #else error = enter_state(state);// 标准linux休眠唤醒的路线 #endif #endif Exit: return error ? error : n; } @ kernel/kernel/power/earlysuspend.c enum { DEBUG_USER_STATE = 1U << 0, DEBUG_SUSPEND = 1U << 2, }; int Earlysuspend_debug_mask = DEBUG_USER_STATE; module_param_named(Earlysuspend_debug_mask, Earlysuspend_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP); static DEFINE_MUTEX(early_suspend_lock); static LIST_HEAD(early_suspend_handlers); static void early_sys_sync(struct work_struct *work); static void early_suspend(struct work_struct *work); static void late_resume(struct work_struct *work); static DECLARE_WORK(early_sys_sync_work, early_sys_sync); static DECLARE_WORK(early_suspend_work, early_suspend); static DECLARE_WORK(late_resume_work, late_resume); static DEFINE_SPINLOCK(state_lock); enum { SUSPEND_REQUESTED = 0x1, SUSPENDED = 0x2, SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED, }; static int state; // 初始化为0 static DECLARE_COMPLETION(fb_drv_ready); void request_suspend_state(suspend_state_t new_state) { unsigned long irqflags; int old_sleep; spin_lock_irqsave(&state_lock, irqflags); old_sleep = state & SUSPEND_REQUESTED; // state = 1 or 3 // state的值会在0->1->3->2->0循环变化,后面分析代码都可以看出这些值代表系统目前处于什么阶段,简单得说就是:正常->准备进early suspend->开始early suspend并且对名为mian的wakelock解锁,如果此时没有其余wakelock处于lock状态,那么系统就走linux的休眠唤醒路线让整个系统真正休眠,直到唤醒源发生,然后将处理器和linux层唤醒。之后android层判断本次底层醒来是由于我所定义的唤醒源引起的吗?如果不是,android将不予理会,过段时间没有wakelock锁,系统会再次走linux的休眠路线进入休眠。如果是,那么android上层就会写一个on的指令到state接口中,同样是会调用到函数request_suspend_state() -> 准备执行late resume -> 开始执行late resume,之后整个系统就这样被唤醒了。 if (Earlysuspend_debug_mask & DEBUG_USER_STATE) { struct timespec ts; // 打印出debug信息 struct rtc_time tm; getnstimeofday(&ts); rtc_time_to_tm(ts.tv_sec, &tm); pr_info("[request_suspend_state]: %s (%d->%d) at %lld " "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)/n", new_state != PM_SUSPEND_ON ? "sleep" : "wakeup", requested_suspend_state, new_state, ktime_to_ns(ktime_get()), tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec); } // eg: [request_suspend_state]: sleep (0->3) at 97985478409 (2010-01-03 09:52:59.637902305 UTC), 这里对时间的获取和处理,在其他地方可以参考 // ready to enter earlysuspend if (!old_sleep && new_state != PM_SUSPEND_ON) { // susepnd会进入这里 state |= SUSPEND_REQUESTED; // state = 1 pr_info("[request_suspend_state]: sys_sync_work_queue early_sys_sync_work/n"); queue_work(sys_sync_work_queue, &early_sys_sync_work); pr_info("[request_suspend_state]: suspend_work_queue early_suspend_work/n"); queue_work(suspend_work_queue, &early_suspend_work); // 在wakelocks_init()函数(wakelock.c)中会创建这两个工作队列和工作者线程来专门负责处理sys_sync和early suspend的工作。关于工作队列的详情参考我工作队列的文章 } // ready to enter lateresume else if (old_sleep && new_state == PM_SUSPEND_ON) { state &= ~SUSPEND_REQUESTED; // state = 2 wake_lock(&main_wake_lock); // 对main wakelock上锁 pr_info("[request_suspend_state]: suspend_work_queue late_resume_work/n" ); if (queue_work(suspend_work_queue, &late_resume_work)) { // 提交late resume的工作项 // // In order to synchronize the backlight turn on timing, // block the thread and wait for fb driver late_resume() // callback function is completed // wait_for_completion(&fb_drv_ready); // 等待完成量fb_drv_ready,他会在late resume结束之后完成 } } requested_suspend_state = new_state; // 存储本次休眠或者是唤醒的状态,供下次休眠或者唤醒使用 spin_unlock_irqrestore(&state_lock, irqflags); } 在系统suspend的时候提交的两个工作项会陆续被执行到,那么下面就来看一下执行early suspend的关键函数。 static void early_sys_sync(struct work_struct *work) { wake_lock(&sys_sync_wake_lock); printk("[sys_sync work] start/n"); sys_sync(); // 同步文件系统 printk("[sys_sync wrok] done/n"); wake_unlock(&sys_sync_wake_lock); } static void early_suspend(struct work_struct *work) { struct early_suspend *pos; unsigned long irqflags; int abort = 0; mutex_lock(&early_suspend_lock); spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPEND_REQUESTED) state |= SUSPENDED; // state = 3 else abort = 1; spin_unlock_irqrestore(&state_lock, irqflags); if (abort) { // suspend 中止退出 if (Earlysuspend_debug_mask & DEBUG_SUSPEND) pr_info("[early_suspend]: abort, state %d/n", state); mutex_unlock(&early_suspend_lock); goto abort; } if (Earlysuspend_debug_mask & DEBUG_SUSPEND) pr_info("[early_suspend]: call handlers/n"); list_for_each_entry(pos, &early_suspend_handlers, link) { if (pos->suspend != NULL) pos->suspend(pos); } // 函数register_early_suspend()会将每一个early suspend项以优先级大小注册到链表early_suspend_handlers中,这里就是一次取出,然后执行对应的early suspend回调函数 mutex_unlock(&early_suspend_lock); // Remove sys_sync from early_suspend, // and use work queue to complete sys_sync abort: spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPEND_REQUESTED_AND_SUSPENDED) { pr_info("[early_suspend]: wake_unlock(main)/n"); wake_unlock(&main_wake_lock); // main wakelock 解锁。看到这里,好像系统执行了early suspend之后就没有往下执行标准linux的suspend流程了,其实不是,android的做法是,不是你执行完了early suspend 的回调就可以马上走标准linux的suspend流程,而是会检查还有没有wakelock被持有,如果所有wakelock全是解锁状态,那么就会执行标准linux的suspend步骤。 } spin_unlock_irqrestore(&state_lock, irqflags); } static void late_resume(struct work_struct *work) { struct early_suspend *pos; unsigned long irqflags; int abort = 0; int completed = 0; mutex_lock(&early_suspend_lock); spin_lock_irqsave(&state_lock, irqflags); // return back from suspend if (state == SUSPENDED) state &= ~SUSPENDED; // state = 0 else abort = 1; spin_unlock_irqrestore(&state_lock, irqflags); if (abort) { if (Earlysuspend_debug_mask & DEBUG_SUSPEND) pr_info("[late_resume]: abort, state %d/n", state); goto abort; } if (Earlysuspend_debug_mask & DEBUG_SUSPEND) pr_info("[late_resume]: call handlers/n"); list_for_each_entry_reverse(pos, &early_suspend_handlers, link) { if (!completed && pos->level < EARLY_SUSPEND_LEVEL_DISABLE_FB) { complete(&fb_drv_ready); completed = 1; } if (pos->resume != NULL) pos->resume(pos); } // 以和early suspend的逆序执行链表early_suspend_handlers上的late resume回调函数 if (Earlysuspend_debug_mask & DEBUG_SUSPEND) pr_info("[late_resume]: done/n"); abort: if (!completed) complete(&fb_drv_ready); // 设置完成量ok mutex_unlock(&early_suspend_lock); }
|